飞行器是如何知道自身的姿态的?
一步:加速度传感器。在测量倾斜角度时,通常可以使用水泡,铅垂线等。根据使用传感器的经验,您会感觉使用重力传感器是可以的。首先,我们来谈谈重力传感器的原理。这里的重力传感器称为加速度传感器。加速度计和陀螺仪指南(非常详细的介绍)加速度计和陀螺仪介绍了解了这一点之后,让我们一起讨论这个问题。加速度传感器,从这个名称(和上面的原理),加速度传感器,也可以看出他不是重力,而是由重力引起的类似加速度的影响。所以对于其他加速度,他也会有读数(运动状态),特别是在振动(振动状态)的情况下,传感器会有非常大的数据变化,此时的数据很难反映出重力的实际值,因此结论是单一的加速度传感器无法完成姿态计算。
两个步骤:由于陀螺仪不能仅通过加速度传感器完成姿态计算,需要添加哪些传感器?从以上信息我们可以找到至少一个传感器,陀螺仪。上面还介绍了陀螺仪的原理,我不多说了。总之,陀螺仪测量的数据是围绕每个轴的旋转角速度。通过高等数学的知识,可以得出结论,可以将角速度积分以获得旋转角度。将旋转角度添加到先前测量的姿态将导致新姿态,设置为姿态A,并且可以通过加速度传感器计算姿态B,使得两种姿态的融合可以实现比较。准确的姿势,航天加速度传感器,这是我后来学到的可用于手势融合的基础。
三个步骤:地磁传感器通过上述步骤。也许大多数人已经晕了。 。但我还是要说,其实我们还缺少传感器,石英扰性加速度传感器,地磁传感器,实际上他有一个流行的名字:电子罗盘。事实上,为此,有些人可能已经知道为什么需要这种传感器。当加速度传感器完全水平时,可以预期重力传感器不能区分水平面中的旋转角度,即不能显示绕Z轴的旋转,只有陀螺仪可以检测到它。
加速度传感器工作原理线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到 F对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军事、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作准确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。石英挠性加速度传感器一般为单轴力矩反馈式加速度计,通过检测质量来检测外界的加速度信号,再经伺服电路解调、放大,在输出电流信号正比于加速度信号。
1、模拟输出vs数字输出:这个是先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。
2、测量轴数量:对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,加速度传感器供货厂家,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。
3、测量值:如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。但是如果你需要测量机器人的动态性能,±2g也应该足够了。要是你的机器人会有比如突然启动或者停止的情况出现,那你需要一个±5g的传感器。
4、灵敏度:一般来说,越灵敏越好。越灵敏的传感器对一定范围内的加速度变化更敏感,输出电压的变化也越大,这样就比较容易测量,从而获得更准确的测量值。
5、带宽:这里的带宽实际上指的是刷新率。也就是说每秒钟,传感器会产生多少次读数。对于一般只要测量倾角的应用,50HZ的带宽应该足够了,但是对于需要进行动态性能,比如振动,你会需要一个具有上百HZ带宽的传感器。
6、电阻/缓存机制:对于有些微控制器来说,要进行A/D转化,其连接的传感器阻值必须小于10kΩ。比如加速度传感器的阻值为32kΩ,在PIC和AVR控制板上无法正常工作,所以建议在购买传感器前,仔细阅读控制器手册,确保传感器能够正常工作。