这些年来随着惯导系统广泛的应用发展对其加速度计的精度要求、稳定要求不断提高有以下几点性能范围:
1、测量范围:-g~+g
2、阈值:10-5g~10-6g
3、线性度:10-2%~10-4%
4、偏值:10-3g~10-5g
因为惯性导航需要的精度要求很高所以对其加速度计的性能需要保持很好的特性,所以需要考虑温度的变化、仪表的机电参数和电子部件参数随时间变化、受到磁、辐射和其它干扰以及对象随线加速度和角加速度运动而出现误差的可能性。为了消除这些误差,除了优化仪表的结构和系统外,还要研究仪表的校正方法,建立误差模型以便在对象的数字计算机中进行算法补偿。
现在有很多不错的加速度计结构方案并生产使用,而惯导系统中主要采用有摆式积分陀螺加速度计、力平衡式加速度计、振弦加速度计、振梁加速度计和单晶硅微加工加速度计。
1、摆式积分陀螺加速度计:优点是刻度系数的长期稳定性好。
2、力平衡式加速度计:优点是它利用闭路系统的负反馈原理把检测质量悬浮在其结构的某一固定位置上,是应用***的一种。
3、振弦式加速度计:比力平衡式加速度计的抗辐射性能好,比摆式积分陀螺加速度计尺寸小、结构简单、价格便宜.
在建筑或工业检查设备等应用中,加速度传感器生产厂家,也许人们更倾向于单手操作。另一只没有操作设备的手可以腾出来控制桶或操作员站立的平台,工业加速度传感器,或者出于安全考虑抓住绳索。操作员可以简单旋转探针或设备来调整它的设置。在这种情况下,3轴加速传感器可以像感测倾斜度那样感测出“旋转度”:在存在重力的状态下测量倾斜的低速变化、检测重力矢量的变化,以及确定方向是顺时针还是逆时针。倾斜检测也可以与点击(冲击)识别结合使用,以便操作员能以单手控制设备的更多功能。工业机械称也有不少此类的运用。在这种应用中,必须计算一个装有东西的桶相对地球的倾斜度以便准确得出重量。压力(例如用于汽车和工业机械中)同样受重力作用的影响,这些传感器包含偏移变化取决于传感器安装位置的膜片。在所有这些情况下,加速传感器执行必要的倾斜度感测,加速度传感器,以便进行误差补偿。
加速度传感器精度较高,量程较大,抗振能力强。可用于对环境和精度都有较高要求的场合,加速度传感器抗振性能良好,其测角精度为角秒级。主要用于石油钻井的随钻测斜系统和连续测斜系统中,并可广泛用于其它工作环境恶劣的系统中。在捷联惯性导航系统中,加速度计组件作为敏感载体比力加速度的传感器,其精度直接影响捷联惯导系统的导航精度。石英挠性加速度计具有结构工艺简单、成本低、可靠性高等优点。因此,由石英挠性加速度计构成的石英挠性加速度计组件被广泛地应用于捷联式惯性导航系统中。标定技术是一种从软件方面提高石英挠性加速度计测量精度的方法。加速度计零位偏置是指加速度为零时,比力测量距零点的偏离,是加速度计标定实验中一项非常重要的参数。因此,在实际系统中,为了提高导航系统的精度,加速度传感器厂,利用三轴转台进行标定实验,标定加速度计零位偏置,以便进行修正补偿,降低加速度计零位偏置对系统带来的不利影响。对于石英挠性加速度计组件的标定,根据观测量的不同可以分为分立标定法和系统级标定法。分立标定直接以加速度计输出为观测量,用二乘法标定其系数。系统级标定则是利用导航误差(姿态误差、速度误差以及位置误差)作为观测量,用滤波估计加速度计标定系数。