石英挠性加速度传感器一般为单轴力矩反馈式加速度计,通过检测质量来检测外界的加速度信号,再经伺服电路解调、放大,石英加速度计其主要由差动电容传感器、检测质量摆组件、电磁力矩器、电子放大器几个大的部分组成。加速度计的输出是流过力发生器与输入加速度成比例的电流。高精度石英挠性加速度传感器是用挠性支承技术所以称为高精度石英挠性加速度传感器,且其结构与工艺与之野夫式的结果大大的简化了。目前这种高精度石英挠性加速度传感器已广泛应用于各类现代惯性体系中。石英挠性加速度计本身具有高精度的特点,在航空航天高精度导航系统、石油钻井测斜或地质勘探捷联系统能够得到非常良好的应用。
为了确保捷联惯导系统中加速度计的性能,研究了CHJN-2A石英挠性加速度计的静态输出特性。通过大量的重复性静态实验测试,分析了石英挠性加速度计的误差来源,并建立了影响导航系统定位精度的主要误差补偿的数学模型。结果表明,石英加速度计厂,CHJN-2A石英挠性加速度计的输出特性具有较好的重复性,可以通过软件进行补偿提高它的精度。低温度系数石英挠性加速度计因数温度系数不加补偿的情况下为 l 0以石标 2~ 2 0 p/}热磁补偿环能达到士 5p m/。低温度系数稀土钐钴永磁与石英表磁路匹配实现石英表低温度系数。可以在不增加仪表零件和不改变仪表现有状态的前提下实现以上目的。
石英挠性加速度计测量组件的参数辨识标定方法
一种石英挠性加速度计测量组件的参数辨识标定方法,其特征是: 步骤1:将配备石英挠性加速度计测量组件的捷联惯性导航系统放置于三轴位置速率转台上,石英挠性加速度计测量组件的X、Y、Z轴陀螺的主轴分别与转台的内、中、外框的自转轴平行,捷联惯性导航系统进行预热,然后采集陀螺仪和加速度计输出的数据; 步骤2:操作三轴位置速率转台使石英挠性加速度计测量组件的x轴指向地理东向,y轴指向地理北向,z轴指向地理天向,记录石英挠性加速度计测量组件的原始输出N↓[x]↑[b]、N↓[y]↑[b]和N↓[z]↑[b],以及三轴位置速率转台输出的姿态角:纵摇角θ、横摇角γ和航向角ψ; 以地理坐标系n系下的重力加速度[0,0,g]↑[T]作为外观测量,利用Kalman滤波器对石英挠性加速度计测量组件的误差模型中的静态误差系数:常值偏差b↓[z]、标度因数误差S↓[z]、二次误差项d↓[z]进行参数辨识; 步骤3:操作三轴位置速率转台使石英挠性加速度计测量组件的x轴指向地理东向,y轴指向地理北向,z轴指向地理天向,以此作为初始位置,石英挠性加速度计测量组件的y轴始终朝北,绕y轴将石英挠性加速度计测量组件按正方向依次转动45度,连续转动7次,记录下每个位置上石英挠性加速度计测量组件的原始输出N↓[x]↑[b]、N↓[y]↑[b]和N↓[z]↑[b],以及三轴位置速率转台输出的姿态角:纵摇角θ、横摇角γ和航向角ψ; 以地理坐标系n系下的重力加速度为外观测量,石英加速度计,利用Kalman滤波器对石英挠性加速度计测量组件的误差模型中的静态误差系数:安装误差τ↓[yz]和τ↓[yx]进行参数辨识; 步骤4:操作三轴位置速率转台使石英挠性加速度计测量组件的x轴指向地理东向,石英加速度计批发,y轴指向地理北向,z轴指向地理天向,以此作为初始位置,石英挠性加速度计测量组件的y轴始终朝北,绕y轴将石英挠性加速度计测量组件按正方向匀速旋转, 以加速度计采样频率记录下石英挠性加速度计测量组件的原始输出N↓[x]↑[b]、N↓[y]↑[b]和N↓[z]↑[b],以及三轴位置速率转台输出的姿态角纵摇角θ、横摇角γ和航向角ψ和围绕三轴的旋转速率ω↓[x]、ω↓[y]、ω↓[z], 以地理坐标系n系下的重力加速度为外观测量,利用Kalman滤波器对石英挠性加速度计测量组件的误差模型中的动态误差系数:尺寸效应误差r↓[z]进行参数辨识; 步骤5:操作三轴位置速率转台使石英挠性加速度计测量组件的x轴指向地理正南方向,石英加速度计 厂家,y轴水平向下,z轴指向地理天向,记录石英挠性加速度计测量组件的原始输出N↓[x]↑[b]、N↓[y]↑[b]和N↓[z]↑[b],以及三轴位置速率转台输出的姿态角纵摇角θ、横摇角γ和航向角ψ, 以n系下的重力加速