加速度计又被称作“比力传感器”。这是因为,单轴加速度计,当载体在惯性空间运动时,加速度 计受到的力是天体星球引力场的万有引力与发动机推力的合力,所以,加速度计测量包括加速度和引力加速度。 加速度计被安装在载体上,三轴加速度计6050,当载体在加速度计输入轴方向上相对惯性空间有运动加 速度时,根据牛顿定律,加速度计所受到的外力为: F2mai (2.1) 这个力等于加速度计检测质量摆产生的惯性力,该力:f哿产生惯性力矩,英挠性加速度计原理及性能 Mg=marL 聊一检测质量摆的质量,g;三一检测质量摆的质量中心至挠性枢轴的距离,cm; 口广加速度计输入轴方向的输入加速度,单位是g,g=9.8m/s2。 惯性力矩使检测质量摆产生运动,其绕挠性枢轴产生角位移,该角位移使差动电容 传感器产生电容差值,在小角位移时: Ac=Kp.da (2-3) 式中:彳产电容差值,加速度计,pF; 蟑卜差动电容传感器在零位附近的传递系数,pF/rad; 彳仅一检测质量摆的角位移,rad; 该电容差值经伺服电路变换成电流信号,该电流向力矩器产生一电磁反馈力矩: MI-KtI Q-q 式中:朋卜力矩器的反馈力矩,N rn; 厨一力矩器的力矩系数,N 卜通入力矩器动圈的电流,A。在结构设计上,由于已采取措施令惯性力矩作用点与反馈力矩作用点重合。因此, 在力平衡状态下,三轴加速度计传感器,必=尥,即 仁(mL/K)口, 式中:m瓣电流标度因数,在数值***于输入加速度为19时所需的反馈电流,亦称自重电流,单位mA/g。 当力矩器反馈力矩与检测质量摆的惯性力矩相平衡时,力矩器动圈中所需的电流与 输入加速度成正比。由于检测质量摆的质量m、质量中心至挠性枢轴的距离三和力矩器 的力矩系数羁均为已知的,因此测量力矩平衡时流经力矩器动圈的电流值,即可测得载 体沿加速度计输入轴上的运动加速度。
态度解决方案是飞行控制的基础和重要部分。估计的姿态将被释放给姿态控制器以控制飞行稳定性,这是飞行稳定性的最重要***。关于姿势计算的基本知识,我不会在这里详细描述,有很多关于此的在线信息。主要是掌握坐标系的概念,几种描述方法的姿态角(欧拉角,四元数,旋转矩阵)。姿态计算的难点主要在于通常用于消费级飞行控制的惯性传感器都是MEMS器件,精度相对较差。同时,陀螺仪,加速度计和地磁仪的单传感器无法获得满意的姿态角信息,因此需要一些融合算法来进行姿态估计。很多人都有这个问题,也就是说,没有办法确定所获角度的准确性。惯性导航的精度在很大程度上取决于组件(主要是陀螺仪)的精度。高精度惯性导航系统最重要的要求是高精度陀螺仪和加速度计。我不知道小范围的高精度是什么。在陀螺仪精度方面,它通常是机械陀螺仪(静电,柔性)>激光>光纤>微机械。简而言之,最重要的是选择具有合适精度的陀螺仪和加速度计。
加速度计是测量静态力和动态力加速度的机电装置。静态力包括重力,而动态力包括振动和运动。加速度计是一种惯性传感器,能够测量物体的加速力。加速力就是当物体在加速过程中作用在物体上的力,就比如地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。加速度计的类型较多:按检测质量的位移方式分类有线性加速度计(检测质量作线位移)和摆式加速度计(检测质量绕支承轴转动);按支承方式分类有宝石支承、挠性支承、气浮、液浮、磁悬浮和静电悬浮等;按测量系统的组成形式分类有开环式和闭环式;按工作原理分类有振弦式、振梁式和摆式积分陀螺加速度计等;按输入轴数目分类,有单轴、双轴和三轴加速度计;按传感元件分类,有压电式、压阻式和电位器式等。通常综合几种不同分类法的特点来命名一种加速度计。